
ProbeVue QuickSheet

Version: 1.0.0 – [6.1 TL7, 7.1 TL1]
Date: 3/2/12

Note: The majority of the contents of this document are based the
original 6.1 release. Some items may not have been functional until 6.1
TL4 or TL6 (7.1). At least one item was introduced in TL7 (7.1 TL1).

Vue Structure
The following is an example of a Vue script. The interpreter “magic”
allows this script to be set executable and called directly from the com-
mand line. This script will run for 10 seconds and count every successful
read() system call that happens on the system during that time.

#!/bin/probevue Interpreter String

/* Successful read() counter */ Comment

int read(int, char *, int); C Function Prototype

int x; Variable Declaration

@@BEGIN Probe Point

{
x = 0;

}
Action Block

@@syscall:*:read:exit Probe Point

when(rv != -1) Predicate

{
x++;

}
Action Block

@@interval:*:clock:10000 Probe Point

{
printf("%d reads.", x);
exit();

}
Action Block

Concepts
• Basic data types from other processes can be accessed directly while

structured data such as a struct or an array must be copied into the
probevue environment with get userstring() or copy userdata()
before it can be used within the probevue process environment.

• If data is paged out, probevue cannot cause a pagefault to bring the
data back in. probevue will return 0 / NULL for this data.

• Looping and complex flow is not supported in Vue, but if-then-else
conditional flow control is supported. Additionally you can return();
(prematurely) from an action block (but not return a value).

• While action blocks act internally like C functions in terms of scoping
and syntax, they have no parameters or return values. Data from the
probed function is available using the argn , rv, and other “ ”
variables. These variables are globally available but are relevant to
the firing probe. For this reason many of the built-in variables “ ”
have no relevance to interval probes that do not fire in a PID context.

Variable Data Types
• The data types available within the Vue language are generally the

same as those within the C language.
• Vue also supports a string, list, associative array, timestamp, and

stacktrace data types.
• float and double data types are supported for capture only. Floating

point math is not supported within the ProbeVue environment.

Lists
• Lists are always global, and therefore must be declared in global scope.
• List must be initialized with the list() function only in @@BEGIN
• No truncate, or re-initialize function exists for a list. Use a total, min,

max, and count variable to manually replicate with a reset option.
• Lists are abstract data types consisting of (returning) long longs.

Associative Arrays
• Auto typed, consist of primitive data types.
• Printed with print(), quantize(), or lquantize(). Reset with clear().
• Keys can be strings or numeric types.

Strings
• The String data type cannot be declared thread local
• Strings can be concatenated using the += or + operators.

mystring = "a" + "b";
mystring += "c";

• Strings are declared using the following syntax:
String mystring[<length>];

Variable Classes
• The “class” of a variable generally refers to its scope and its provider.
• Not all classes are available from every section of a Vue script.
• Variables can be explicitly declared as global or thread local.
• Variables declared in an action block are local to that block.
• Exit and Entry variables are relevant only in function probes.
Global

Declared global and available only within Vue script
Thread Local

Local to the probed thread but global to the Vue script
Automatic (action block local)

Declared within and local to the action block
Exit (rv)

Provided by syscall(x) / uft exit probes, local to action block
Entry (argX) ⇐ Where X ≥ 1

Provided by syscall(x) / uft entry probes, local to action block
Kernel

Provided externally, global to Vue script
Built-In (pid, pname, uid, etc...)

Provided externally, values dependent upon probe type
Shell ($1, $PATH, etc...)

Provided externally, global to Vue script

Built-in Variables
The following variables are availible in the predicate or probe action
block are are the relevant values for the process firing the probe.

tid Thread ID
pid Process ID
ppid Parent Process ID
pgid Process Group ID
pname (String) Process Name
uid User ID
euid Effective User ID
trcid PID of the probevue environment
errno Current errno value (exit probes)
kernelmode (Boolean) Process in Kernel-mode
argX X th arg to probed function where X ≥ 1 (entry)
rv returned value of probed function (exit)

Shell Variables
• Exported environmental variables are available within a Vue script

much like they are in a shell script.
• The script command line positional paramaters are $1 ... $n
• The $ CPID variable is availible when using probevue -X <command>
• Parameters must be passed wrapped in \" to be recognized as a string

./myvuescript.e \"string\"

Other Variable Types
• stktrace t ⇐ result of get stktrace(level)
• probev timestamp t ⇐ result of timestamp()

Declaring Thread, Global, & Kernel Variables
• Variables declared at the top of a Vue script are global.
• Specifically declare a variable global using:

global int myglobal; (Explicitly declared)
global:myglobal = 0; (Implicitly declared on first use)
• Thread variables are declared using thread or thread:
• Kernel variables are declared using kernel

kernel long time ⇐ Seconds since epoch

Predicates
• Predicates are optional filtering clauses for probes definitions
• For example, to limit read probes to only stdin for a single PID:

@@syscall::read:entry
when ((pid == $PID) && (arg1 == 0))

Probe Types & Formats
• ProbeVue has five general probe classes. They are:

1. probevue probes that fire at BEGIN and END of Vue session
2. User Function Entry probes (uft,uftjava,uftxlc++)
3. System Call Entry/Exit probes (syscall,syscallx)
4. Probes that fire at specific time intervals (interval)
5. Conventional trace probes (systrace)
• Syscall probe:
@@syscall:<pid>:<syscall name>:<entry | exit>
◦ The <pid> is optional and can be globbed with a *
• Syscallx probe:
@@syscallx:<pid>:<syscall name>:<entry | exit>
◦ Second, third, or last tuples can be globbed
• Interval probe:
@@interval:*:clock:X 00
◦ Second tuple (optionally) specifies a PID context for the interval
↪→ PID intervals only fire when the PID is on a CPU at the interval
◦ The final section is in milliseconds and must be divisible by 100
↪→ This can be tuned to 10 milliseconds with probevctrl
◦ A value of 1000 fires every second
• User Function probe:
@@uft:<pid>:*:<func name>:entry
◦ The <pid> and <func name> sections are required (no globs)
◦ The third section is reserved and must be a *
• ProbeVue probe:
@@BEGIN and @@END

probevue Command-Line Options
• Most command line options will not be processed properly if they are
passed as an option to the interpreter in the #!/bin/probevue magic.
-I <FILE> Use FILE as include file
-o <FILE> Use FILE as output destination
-X <PROG> Start PROG as watched process ($ CPID)
-A <ARGS> Arguments to -X PROG
-K Enable RAS functions
-c timestamp=0 Timestamp all output
• If a script name is specified, it and its arguments should be the final

arguments to probevue
probevue -I header.i script.e scriptparam1 scriptparam2

@@uft probes
• uft supports entry and exit probes
• The PID must be specified in the probe description

@@syscall probes
• Not all syscalls have probe definitions (in syscall provider).
• The function name portion of the probe definition cannot be globbed
• The function must be prototyped if argX or rv are to be accessed.
absinterval accept bind close
creat execve exit fork
getgidx getgroups getinterval getpeername
getpid getppid getpri getpriority
getsockname getsockopt getuidx incinterval
kill listen lseek mknod
mmap mq close mq getattr mq notify
mq open mq receive mq send mq setattr
mq unlink msgctl msgget msgrcv
msgsnd nsleep open pause
pipe plock poll read
reboot recv recvfrom recvmsg
select sem close sem destroy sem getvalue
sem init sem open sem post sem unlink
sem wait semctl semget semop
semtimedop send sendmsg sendto
setpri setpriority setsockopt setuidx
shmat shmctl shmdt shmget
shutdown sigaction sigpending sigprocmask
sigsuspend socket socketpair stat
waitpid write

@@syscallx (Extended syscall) probes
• syscallx is similar to syscall except it is not limited to a small list
• The extended syscall provider allows for globbing of the syscall name
• Functions must be forward declared / prototyped for argument access

Vue Snippets
Multiple probe definitions on one line

@@syscall:*:read:entry, @@syscall:*:write:entry
Printing time elapsed

totalt = diff time(begint, endt, MILLISECONDS) / 1000;
printf("Time elapsed: %ld h %ld m %ld s\n",

totalt / 3600,
(totalt % 3600) / 60,
totalt % 60);

Have probevue exit when watched PID exits
@@syscall:$1:exit:entry
{

exit();
}

Calculating a “floating point” percentage of a integer number
printf("%lu.%0.2lu%%",

(intn * 100) / intd,
((intn * 10000) / intd) % 100);

Capturing count of each syscall for a specific PID
@@syscallx:$1:*:entry
{

syscount[get function()]++;
}

Print top-level function for PID every 1/10th sec (when on CPU)
@@interval:$1:clock:100
{

stktrace(PRINT SYMBOLS | GET USER TRACE, 1);
}

Functions
Printing
void printf(format, ...)
↪→ Works like the C stdio version of printf()

void trace(data)
↪→ Dumps data in hex to the trace buffer (output)

stktrace(flags, depth)
↪→ Dumps a stack trace of depth levels. Flags:

PRINT SYMBOLS ⇐ Use symbol names
GET USER TRACE ⇐ Show user-mode stack

ptree(int depth)
↪→ Print an ASCII-art tree of processes

print args()
↪→ Print function name and arguments to that function

Associative Array Printing
void print(myArray)
↪→ Simply dumps array data

void quantize(myArray)
↪→ Prints array data with relative ”bars”

void lquantize(myArray)
↪→ Prints array data with adjusted relative ”bars”

Lists
List list(void) ⇐ Initialize a list.(@@BEGIN)
void append(List, long long) ⇐ Append an item
• The List data type utilizes a number of aggregation functions.
sum(List) avg(List) count(List) min(List) max(List)

Probe point information
String get probe(void)
↪→ Get the name of the firing probe

get function(void)
↪→ Get the name of the firing function (minus “()”)

int get location point(void)
↪→ Returns either FUNCTION ENTRY or FUNCTION EXIT

Tenative Tracing
• Tentative tracing allows trace data to be captured and selectively

used. All tentative tracing sessions are keyed with a string that
is the single parameter to each of these functions.

void start tentative(String)
void end tentative(String)
void commit tentative(String)
void discard tentative(String)

Other
int strlen(String)
↪→ Get the length of a string (TL3 and later).

int sizeof(type) ⇐ May be unreliable on some types (like argX)
↪→ Get the size of a data type

String get userstring(pointer, length)
↪→ Copy a string from userspace. Set length to -1 to copy to EOL.

stktrace t get stktrace(depth) ⇐ printf(%t...) to print
↪→ Return a stktrace t item with depth levels

probev timestamp t timestamp(void)
↪→ Get a high resolution time stamp

long long diff time(start ts, end ts, format flag)
↪→ Compare two time stamps (from timestamp() function).

format flag is either MILLISECONDS or MICROSECONDS
void exit(void)
↪→ Exit the probevue session.

void return(void)
↪→ Exit the action block.

int atoi(String)
↪→ Converts a string representation of a number to an int

String strstr(String 1, String 2)
↪→ Return a new String containing first instance of S2 in S1

void copy userdata(argX, destination)
↪→ Copies probed userland memory structure to probevue memory

Builtin Structs
• All values here are long long except cwd (cwd is of type String)
curthread {
tid ⇐ Thread ID
pid ⇐ Process ID
policy ⇐ Scheduling policy
pri ⇐ Priority
cpuusage ⇐ CPU usage
cpuid ⇐ Processor to which the current thread is bound to
sigmask ⇐ Signal blocked on the thread
lockcount } ⇐ Number of kernel lock taken by the thread
curproc {
pid ⇐ Process ID
ppid ⇐ Parent process ID
pgid ⇐ Process group ID
uid ⇐ Real user ID
suid ⇐ Saved user ID
pri ⇐ Priority
nice ⇐ Nice value
cpu ⇐ Processor usage
adspace ⇐ Process address space
majflt ⇐ I/O page fault
minflt ⇐ Non I/O page fault
size ⇐ Size of image in pages
sigpend ⇐ Signals pending on the process
sigignore ⇐ Signals ignored by the process
sigcatch ⇐ Signals being caught by the process
forktime ⇐ Creation time of the process
threadcount } ⇐ Number of threads in the process
cwd } ⇐ CWD of process (7.1 TL1/6.1 TL7)
ublock {
text ⇐ Start of text
tsize ⇐ Text size (bytes)
data ⇐ Start of data
sdata ⇐ Current data size (bytes)
mdata ⇐ Maximum data size (bytes)
stack ⇐ Start of stack
stkmax ⇐ Stack max (bytes)
euid ⇐ Effective user ID
uid ⇐ Real user ID
egid ⇐ Effective group ID
gid ⇐ Real group ID
utime sec ⇐ Process user resource usage time in seconds
stime sec ⇐ Process system resource usage time in seconds
maxfd } ⇐ Max fd value in user

Headers
• typedefed types are not valid (unless the typedef is included).
• Headers have .i extensions by convention. It is not safe to assume

that .h files will parse correctly.
• Header files can be included using one of the following methods:

probevue -I header1.i -I header2.i yourscript.e
- or -

probevue -I header1.i,header2.i yourscript.e
• There is no #include or #pragma option from within a script

About this QuickSheet
Created by: William Favorite (wfavorite@tablespace.net)
Updates at: http://www.tablespace.net
Disclaimer: This document is a guide and it includes no express war-
ranties to the suitability, relevance, or compatibility of its contents with
any specific system. Research any and all commands that you inflict
upon your command line.
Distribution: The PDF version is free to redistribute as long as credit
to the author and tablespace.net is retained in the printed and viewable
versions. LATEXsource not distributed at this time.

