
Let me start by emphatically stating that I am a reluctant PowerPoint user for
presentations. My strong preference is to present directly with only occasional
use of a white board. Because it was necessary to present chunks of code at this
presentation I have broken down and chosen to use the “industry standard”
tool for presentations. So, first, please forgive my inept attempts at using this
tool. Second, my hope is that if/when this document is published online it can
(to some extent) stand alone without my oral presentation.

The belief is that a presentation like this will simply carry too much info for the
allotted time so the hope is that having a stand-alone presentation will serve as
a means to refresh the viewer on the subject when viewing it days, weeks, or
months after the presentation.

Furthermore, the presentation must be restricted for time, audience
participation, and technical capabilities of those in attendance. So I have
included slides with the possibility that they can be skipped for these reasons.

NOTE: Be careful when copying code examples out of PowerPoint. I have
noticed that they have a tendency to pick up unwanted & invisible characters
when copied out. I assure you, they all worked when they went in.

1

Admittedly, this slide is somewhat forward looking. The important truth of the
matter is that there is a significant effort on the part of all dynamic trace tool
creators to improve the number of providers and ultimately the number of
probe points. As this number grows, the dynamic tracing tool becomes more
and more a focus of those looking to monitor a Unix system.

By comparison, the approach taken by Sun with DTrace is to make it a single
point for all performance event related data. To be true, this vision is short of
reality as well, but the approach is one that makes these tools much more
usable as data can be collected and managed through one tool. This central
focus allows for two key concepts; first, that performance events can be closely
correlated and second, that the administrator does not need to move from one
tool to another as she diagnoses a problem.

2

Event filtering can happen through a predicate clause that determines if an
action block should execute (at runtime) or by limiting the number of
registered probes (at compile time). Limiting the number of registered probes
can have a much lesser effect on the ultimate load of a trace tool (this is the
lightweight aspect). To the user this is a very subtle distinction as
programmatically these seem very similar. In both cases it offers a flexibility
(the dynamic aspect) that previous trace tools did not.

The benefit of parsing data in (near) real time is that utilities such as truss and
trace can only capture a limited amount of data because they do not know what
part is of value for future analysis. With first hand access to the data in real
time the possibilities open up to searching through larger data sets for specific
data. To do this after the fact with trace/truss the entire data set of the
parameters to a call like read() or write() would need to be captured.

The passwd snoop utility (AKA: The “A Nefarious Vue Example” slide) in this
presentation would normally capture read operations for every library and
message file loaded. The script presented here can filter on exact file
descriptors and even on size and content of the read() or write() operation.

3

ProbeVue While still young, and lacking a depth of providers / probe points,
ProbeVue offers distinctly unique capabilities from other tools. ProbeVue uses
multiple providers for probes. For example, ProbeVue can use trace hooks as probe
points, and it relies upon /proc for some capabilities.

trace The trace binary name is a bit misleading as there are multiple “wrapper”
utilities that capture a set number of hooks, and then parse/format the results. The
key difference between trace and any of these other tools (after system load) is the
complexity of rolling your own utility using this tool. Even finding the right hooks can
be challenging for most admins, let alone retrieving the data from a trace file, parsing
the binary data, and then displaying it. The PerfStat API looks absolutely simple by
comparison.

truss and all proc based tools are focused on looking at the interface between the
application and the system. The interface being system calls, faults, and signals. (truss
can view library calls, but tends to be used for the system interface.) The phrase
“application” here referring to a specific application being watched.

topas is really a reference to all LibPerfStat based tools. I chose topas as the header
for this column because so many of the LibPerfStat APIs are clearly working under
the covers. ProbeVue does not have a LibPerfStat provider at this time, and there does
not appear to be a linkage on the roadmap – although I think there should be.

Profiler is really a generic reference to any profiler packaged with a development
environment (possibly excluding Java tools). The key point is that profilers tend to be
geared to a specific binary type and do not come with the system. So for an
administrator to profile an application on a production system, at least some of the
development tools must be installed in the production environment, the application
may require a special debug build, and it is likely that the application will need to be
launched from the profiler process.

4

This slide is self-explanatory – even though the examples are kind of nutty.
The point is to relate to the reader the many possibilities of a dynamic tool.
This list is really bounded only by imagination.

A side effect of this slide is the point that single purpose tools (vmstat, iostat,
etc..) tend to be more limiting than environments. A holistic tool that mixes
these capabilities can see across multiple areas and have a more meaningful
vision into the system.

5

This slide is used twice. Here it is used to present the level of logic used and to
(somewhat) sensationalize ProbeVue’s capabilities as a continuation of the
previous slide’s appeal to the reader.

A more detailed explanation comes with the later slide, but this is a script that
snoops all important I/O on the passwd utility. As a result it prints user names
and passwords as modified by the passwd utility.

6

Much of the IBM documentation refers to Vue as being “awk-like”. I think the
comparison is good in that 1) they are written to respond to situations as they
are encountered, 2) they have similar structure. The comparisons soon fall
apart after that as the problem domain and language elements are entirely
different.

An “event driven” language is where you define what to do when an event
happens. This differs from an imperative language (a loose classification) in
that an event driven program does not (necessarily) have a clear flow.
Imperative languages move to a specific end possibly assisted by user input.
The flow of a Vue “application” is dependent on events that happen (typically)
outside the ProbeVue environment and (in most cases) do not have a
predictable sequence of events.

The key skills that make this “language” / environment approachable are:
•  Knowledge of the C language
•  Knowledge of system calls
•  Knowledge of shell scripting and some high level language experience such as
Perl, Java, or C++.

7

These are some of the concepts that first confused me when looking at a dynamic trace
environment. This is really a continuation of the previous slide, but with a focus on what hurt
my brain the most when I first looked at dynamic tracing.

The event driven nature of the language is not too hard to grasp, it just makes the code seem
awkward at first.

Understanding that libc calls are not syscalls was one of the first problems I ran into when
attempting to write a script. The syscallx provider in Vue and the –l (ell) option to dtrace can
be useful in determining what is a syscall and what can be probed. The gethostbyname()
example is a libc call that can be probed by the UFT provider – but UFT probes are not system
wide, and it is not used by all applications that look up names.

The different “meanings” of the word “trace” can be confusing. Here is a simple glossary:
trace() – A raw “dump” of a variable passed as a parameter. This is an API that takes a data
item as a parameter. printf() is a close equivalent.
Tentative tracing – The ability to send data to output (without committing it) and then, later,
actually printing it or discarding it.
trace buffers – The output of the probevue command. A close analogy would be the stdout
buffer. Unlike stdout, trace buffers do not “block” and can be overrun with excessive data.
trace provider – This is a provider that is actually the legacy trace command. It uses the same
hooks from trace but they are available within Vue as a probe point.

There are examples of a thread local variable here in this presentation.

Memory (pointers) that you get from a syscall (or similar provider) are pointers that are
relevant in another process. The memory must be paged in, and only then can it be copied into
the probevue environment. Once it is in the local probevue environment, it can be searched,
managed, printed, etc…

8

This is a simplistic, yet runable script. Notes on specific sections will be
distributed across the following (transitional) slides.

9

This example is of a Vue script set executable and utilizing an interpreter
“magic” string at the top of the file. Vue scripts can be passed as parameters to
the probevue binary or wrapped in a shell script (where they are passed to the
probevue binary).

A limited set of parameters can be passed to the interpreter through the
“shebang” line. When passing complex parameters, strings, or include (.i) files
it is recommended that the Vue script be wrapped in a shell script. Wrapping
within a shell gives additional flexibility in parameter parsing and validation.

When passing strings in a Vue script that has been set executable, the strings
must be passed with escaped quotes – otherwise the strings are parsed by
ProbeVue as objects (such as a variable name). This is inconsistent with most
other Unix / shell tools, so the recommendation is to wrap scripts requiring
string parameters in a shell script.

10

Vue uses C-style comments.

C++ comments also work but are not documented, so reliance upon them is
not advised. (They work probably because of the potential inclusion of C++
header files that may have C++ style comments.)

The shell interpreter line works like it does in shell, perl, and other
interpreters. For this reason the # character works like a comment. It is
strongly recommended that shell-style comments NOT be used. C style defines
(pre-processor directives) are ignored but could conceivably be used in future
implementations of Vue.

11

In order to access parameters or return values from system calls, the function
must be prototyped. This implementation detail is somewhat unique to Vue
amongst the dynamic trace tools on the market. These prototypes can be
collected in a common include file. (Note: ProbeVue cannot parse all the
complexities of a common .h file. These must be converted/simplified and
usually have a .i extension in this format.) It has been suggested that a
common include file be created and auto-included for each provider requiring
one (uft excluded of course).

In this example we are interested in the return value from fork(). It has three
possible values: -1 on error, 0 if we are the child, and >0 (the PID of the child)
if we are the parent.

Note the read() prototype in the data type / context slide. It mentions some
usage notes on what data type is specified when prototyping and the impact on
actual data types Vue uses.

12

This line is where all the probe points we wish to register are specified. This
(probe point) specification is for the action block that follows. It is possible to
have more than one probe point specification (with accompanying action
block). It is also possible to specify more than one probe point in a single probe
point specification. Some providers allow for wild carding (The “*” here
specifies that we want to look at ALL PIDs).

The probe point is defined by:

@@syscall:*:fork:exit ! This specifies the syscall provider
@@syscall:*:fork:exit ! (For the syscall provider) the PID of a process can be
specified here
@@syscall:*:fork:exit ! The specific syscall to probe. This may map to a
slightly different syscall (find actual name with get_function()).
@@syscall:*:fork:exit ! This can be entry or exit. fork() is more interesting to
us on exit as we can then determine parent-child relationship.

13

The predicate clause is a limiting function on the number of probes that we
want to instrument. In this case we only care about fork() calls that have a
return value of greater than 0. (This happens when we are the parent and the
call was successful. The return value will be the PID of the new child.)

This functionality could have been achieved using an if statement in the action
block. The understanding is that this method is slightly more optimal –
performance wise. When we can limit probe registration, such as specifying a
PID in the probe definition line rather than the predicate, there can be a much
more significant impact on performance.

D users will have a tendency to rely upon the predicate as this is the only place
that D allows for this kind of logic. Vue provides for the capability to put a
conditional (if) in the action block.

14

The action block is what most resembles a C function. The primary differences
are some syntactical extensions to C and that we do not have a parameter list
or a return value like a C function, instead it relies entirely upon side effects.

While there is not an explicit parameter list like a C function, there are
parameter-like variables that are available from this provider. The availability
of those parameters is dependent upon the system call probed, the entry/exit
probe used, and if the system call was prototyped. In this case, we only have
one “parameter” from the probe, and that is the return value.

__pid and __pname are global read-only built-ins that are contextually set
based upon where they are used. __pid is the process ID (an integer) and
__pname is the process name (a string).

15

printf() conforms to the C version. The most significant difference is that you
will NOT be warned when passing an invalid type as you would in the C
version (by your compiler). The result is that if the format specifier is too small
then significant digits may be ignored when printed. The alternative is to use
the trace() function that does not rely upon format specifiers. (Personally I
tend to use the trace() function to debug printf() issues. – In the event that I
used the wrong format specifier for the datatype supplied.)

This lack of checking of format specifiers to datatypes was suggested as a bug
in ProbeVue. At the very least the probevue binary should allow for a “strict”
flag that will warn in situations where data may be mis-interpreted.

16

This is the previous sample code running on a system. Adding probes of exec()
and exit() calls may give some additional insight into what is happening here
(if this were an actual point of interest).

I rsh logged into the system to show a more interesting thread of fork() calls
than the shell running “ls” over and over.

It would be nice to offer a (wall clock) timestamp that could be matched with
wall time for these events. ProbeVue does not currently offer this capability
(other than reading the kernel time variable). There is no option within
ProbeVue for conversion to localtime. Still, the ability to display a
chronological view of forks (exec()s and exit()s) across the system is rather
unique in system tools of this simplicity.

[Conceivably one could pass a parameter to diff_time() that was set to the
Unix epoch (0) to get a more reliable result than relying on the kernel time
variable. (Note: Some early versions of ProbeVue did not always return the
proper value for time (from the kernel variable). This was based upon personal
experience, and not a methodical / thorough testing of the problem).]

17

It is difficult to relate variables in Vue to the first time user as they have several more
dimensions than that of C. Scope can be complicated by the thread concept as well as
relating context. Examples of these differences follow over the next few slides.

While Vue appears at first to be C based, Java and C++ developers may be more
comfortable with some of the datatypes and (overloaded) operators – such as the
ability to concatenate strings with the “+” operator.

The timestamp data type will seem familiar to those using the high resolution time
functions that use the timeval structure such as gettimeofday(). The specific
implementation details are not shared by IBM – but it is sufficient to say that
mathematical comparisons on this data type essentially work like integers, but
calculating differences on (subtracting) two values requires use of the diff_time()
function.

String, struct, and any pass by reference data types must be copied into the ProbeVue
environment as they cannot be accessed directly from the watched process. If the
memory location is paged out the copy will fail (silently) and the default behavior of
ProbeVue is to NOT cause a page fault.

It is the author’s opinion that the List data type and related functions are worthless. –
This statement really depends partially upon how List is actually implemented. If all
data points are retained in a dynamic list then it is not worth using. If List only stores
min, max, count, total, and a running average (derived from total / count) then the
List and associated API offers some (code simplification) value – provided you never
intend to reset the data on intervals (as there is no reset option for a List data type).

18

This is a demonstration of three different variables in a scoping exercise.

I used the fork() syscall because that is something that I can easily control on a relatively quiesced
system.

What is happening in this example (Using the global counter variable):
1: ls in a shell
2: ls in a shell
3-9: A rsh login
10: ls in the original shell

The global variable increments as expected.
The thread variable increments as expected (there are multiple processes calling fork()).
The local variable is always local and never increments beyond 1. (See the NOTE below.)

The key points:
•  The thread local has no context in the BEGIN or END blocks.
•  The global behaves like all globals everywhere.
•  Use locals with caution – they can bite their owners if not initialized (see NOTE below).

NOTE: The li (local int) is declared and initialized as such. The only reason it appears to work as a local is
because it is re-initialized in each action block. It DOES NOT actually function as a local, but instead as a
global. Some variations on the local usage and how it “responds” are recorded here:
•  Declared using “__auto int li;” at the top of each action block ! acts like a global.
•  Declared and used only in syscall block (using __auto with no initialization) ! acts like a global (keeps
its value between runs).
•  Declared and initialized in BEGIN (or syscall) and accessed elsewhere ! acts like a global. It is “known”
in the END block even though not declared there.

This is a TL3 system.

Initially I tried to write an example with a variable namespace clash between a local and a global (using a
variable of that name). It failed on compile with the following error:
ERR-67: Line:12 Column:9 Variable 'clash' already declared at line 3.

19

The context of a variable determines both its scope but also its data type (size).

The size of a pointer and a long vary by the bitness of the probed process, an
int does not. Variable size types assume 64 bit values in the ProbeVue
environment, but the first write (in this example) happened in a 32 bit process.

There is no known (to me) method for determining bitness of an application
from probevue (short of calling sizeof() on a context sensitive / variable size
data type).

NOTE: The prototype for write() depends on defines but usually maps to the
following line in unistd.h:
extern ssize_t write(int, const void *, size_t);
ssize_t is a signed long (typedef in sys/types.h)
size_t is a long (typedef in sys/types.h)
[Personal note: My understanding of the “extern” keyword in this context is
that the function is really provided by the kernel and is not actually in libc.]

The data types specified in the prototype do not matter to the results of this
script. Declaring int or (unsigned) long in this example does not change the
results. (Most of the examples in the Extended User Guide Specification use
“int” in place of size_t.)

20

This is a (greatly) simplified version of accessing a pair of kernel variables.

The version that is in the Extended User’s Guide Specification makes reference
to more variables – of greater interest.

Kernel variables cannot be used in predicates (although you should be able to
copy the value into a local and compare that way).

21

syscall – Covered extensively here
interval – A timer
internal – BEGIN and END probes
UFT – This is basically a “umbrella” provider for the original C uft provider
and the newer C++ version. These are different providers and have different
syntax.
trace – Not really covered here. Note that this is limited access to trace hooks
and NOT the trace() call.

Additionally:
syscallx – REGEX capable version of syscall. It is not documented at this
time, so appears to be semi-unofficial. There is a slide on this at this time.
java – It is in the TL release notes, but I have not seen documentation for it,
and would probably be inclined to rely upon actual Java tools, and not
ProbeVue.

22

This is a nonsensical script that watches a PID from the time the script was
started until the PID exits, then reports the time. This is kind of like the “wait”
command. The point here is to demonstrate several different probe definitions.

NOTE: timeinsec fell out of scope in the syscall action block when run on TL3.
I initially printed elapsed time in the syscall action block to save space in the
slide – but consistently got a value of 0. Explicit global declarations and
references made no difference to the outcome. This problem disappeared once
the system went to TL4.

23

These are probe points provided by the ProbeVue environment. They are fired
as probevue starts and as it exits. They are placed in that order here for a visual
simplicity and not as a requirement.

24

This is the syscall provider.

Field 1 is always “syscall” (There is a syscallx version).

Field 2 can be wildcarded for this provider. Here it is set to the first parameter
to the script. If the parameter is not passed or is invalid (no explicit checking is
done in the script) then the probes will fail to register as being of invalid
format. So there is an “implicit” checking of this value.

Field 3 is the syscall name. As noted elsewhere (in this presentation) this
cannot be wildcarded (the syscallx version supports a wildcard (*)) and is NOT
the libc API but the kernel API.

Field 4 is the entry or exit point of the syscall. The return value is only
available on the exit. The parameters are only available on the entry.

25

The interval provider does not (currently) set context (such as a process). For
this reason it can not be used to look at a specific process on an interval. The
second field is reserved for this (potential) use.

The third field is “clock” and is for wall clock time. There is currently no other
option for this field.

The final field is the timer resolution. The value here is in seconds with the
minimal value (or granularity) being 1/10th of a second (or 100).

26

syscallx is not officially published (This was successfully run on a TL3 system).
Without an associative array / aggregations, this wildcard capability is of little
use. At best we can only gather basic statistical info (such as the number of
syscalls for this PID, or time spent in each syscall, etc..). We will not be able to
dump this into an aggregation and sort by the number of syscalls, or time
spent in each syscall, etc… Although, it is possible we could do this with some
post processing tool like perl.

syscallx does not support an actual REGEX capability in the probe point
definition. I was able to do a (simplified) REGEX using the following code:

@@syscallx:$__CPID:*:entry
{
 funcname = get_function();

 if(strstr(funcname, ”SIMPLE_PATTERN"))
 printf("%s\n", get_function());
}

I would argue that the power of syscallx (over syscall) is not the ability to
wildcard the function name but the ability to probe significantly more syscalls
than with the original provider.

27

Notes:

•  The libc section of the probe point specification is not necessary. This can be
wildcarded.
•  The interpreter magic is NOT used because we relied upon $__CPID to get
our PID. This means we use –X and –A for our application.
•  When using –X, the full path to the binary is required. The probevue
environment does not understand $PATH.
•  The gethostbyname() is prototyped because we access one of the arguments.
If we were just looking to see if it was called, then the prototype is not
necessary.
•  This example cheats a bit by not copying to an specific / explicit local string.
Here we copy to the parameter list of the printf() call.

28

It may be appropriate to skip this slide in the presentation due to size limitations, screen display, and audience familiarity with subject.

This is the slide introduced earlier, we can now talk about it. (The conversation must come from the presenter as space in the
PowerPoint comments do not allow for a full discussion.)

It is a decent presentation of the following concepts (and carries some “appeal” because of the subject matter and sensational slide
title):
•  Thread local variables
•  Copying data from the remote application space
•  Prototyping system calls
•  The difference between the entry and exit probes for the syscall provider

This is dumped onto two “screens” to show all the code. This is about as efficient as this can be displayed without removing or
reformatting code to save space.

What this code does: It looks for reads/writes on a process called “passwd” and dumps the results to a file or stdout with some relevant
formatting.

A sample run looks like this:

Changing password for "wfavorit"
myoldpass
mynewpass
mynewpass

Changing password for "wfavorit"
userpass
userpass

^C

The first is when run by the user, the second is by root. (Fake PWs were entered, otherwise this is a cut-n-paste from a real session.)

Some notes about the code:

•  The passwd binary is suid and owned by root (instead of RBAC) so we cannot use the __uid or __euid values to determine who the
target user is. Neither can we pull command line info. But we know that passwd writes a string that begins with “Changing” that
includes the target users name.
•  We cheat in a few places because we know that file descriptor 5 is used to read user input and that the reads for that information is
always of size = 1. The “cheat” here is that I used ProbeVue to find the file descriptor and then I filtered on it specifically. The approach
of using a single tool to work to a specific end is central to the power of this environment.
•  This is more about making a point about Vue features and capabilities, than real value. The primary reason (that is is of limited value/
threat) is that it can be only run by a super user who really does not care about passwords (as a means to personally exploit the system).

29

This is a dangerous slide in that it is somewhat subjective. Please ingest with a grain of salt.

DTrace

This is the reference standard of lightweight dynamic tracing environments. It was the first to the game,
it has the longest history, the most support, and is the most powerful of the three.

ProbeVue

The presentation is about ProbeVue so I will skip the details and say that there is a significant effort from
Austin to develop ProbeVue. Changes to the environment are seen on virtually every TL.

SystemTap

I am not entirely familiar with SystemTap but I have been watching from a distance for some time.

SystemTap is the Linux (GNU*) variant. GNU is mentioned not simply out of respect to RMS, but more
of an acknowledgement of licensing incompatibilities between the Sun open license on D and that of the
GNU license of Linux.

The most interesting things of note on SystemTap is the metamorphic and full feature design. I see the
design effects of multiple development groups pulling in different directions as well as the kitchen sink
approach to features. Neither of these is meant as a compliment. The varied focus in the design means
additional complexity. The full language approach means that SystemTap is capable of infinite loops
(that are now modules in your kernel).

Both D and Vue seem to have a well focused / mature design that SystemTap lacks.

Others

HP is touting Ktrace and Caliper as equivalents. (Ktrace is an AIX trace “equivalent” and Caliper is a
profiler.) While they are powerful tools, they are not lightweight dynamic trace tools. Furthermore (by
HPs own documentation ktrace is not recommended in production environments nor can it be used in
Integrity VMs.)

Also note: Because of the nature of the probes, dynamic tracing scripts are typically NOT portable across
different versions of Unix (ie: Solaris to OS-X). There will be subtle variations in the system calls that will
cause a script to fail on a different Unix. There is no method to move across language environments (ie: D
to Vue). Although knowledge of one language translates well into the other.

30

I am careful not to mention items that IBM has not committed to. This slide is
generic enough and tends to reference items that are already known (and
searchable on Google).

My personal requests (on top of the ones that are in the pipeline) are:

•  Access to LibPerfStat: This should be fairly easy to implement as a thin logic /
mapping layer that would allow a PerfStat API to be called from within the
ProbeVue environment. The ability to access this significant body of metrics
would be a great addition to the capabilities of the tool.
•  Access to a process environment info: Access to environmental variables, and
contextual info such as CWD would be great.

31

Useful URLs:

http://www.ibm.com/developerworks/aix/library/au-probevue/
http://en.wikipedia.org/wiki/ProbeVue
http://www.tablespace.net/probevue/index.html
http://www.tablespace.net/quicksheet/vue-quicksheet.pdf
http://www.ibm.com/developerworks/aix/library/au-probevuec/index.html
http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=/
com.ibm.aix.cmds/doc/aixcmds4/probevue.htm

32

33

Personal & presentation info.

34

